The kinetics of proteinase K digestion of linear prion polymers.
نویسندگان
چکیده
Transmissible spongiform encephalopathies such as scrapie are caused by a protein-only infectious agent, known as a prion. It is not clear how a protein can be capable of replicating itself, and the mechanism remains controversial. One influential model hypothesizes that prions are nucleated, macroscopically linear polymers. We investigated the theoretical kinetics of this model and derived predictions which could be used to test the model. In the model, the polymerization and depolymerization rates are independent polymer size. This leads to an exponential size distribution at equilibrium. In agreement with a prediction stemming from this size distribution, the average size of PrP-res polymers was proportional to the square root of the concentration of PrP-res in a published study of in vitro conversion. Prion digestion by proteinase K (PK) is predicted to be biphasic. The second phase of digestion should be virtually independent of the PK concentration and should depend on the initial size distribution of prion polymers. For initially equilibrated polymers with an exponential size distribution, phase two digestion is exponential at a predicted rate. This rate varies in a defined way with the concentration used for equilibration and with other parameters which affect the average polymer size.
منابع مشابه
Comparative Studies on the Interaction of Proteinase-K with Nano-CuO and Copper Ions
The interaction of copper oxide nanoparticles and copper ions and proteinase K from Tritirachium album Limber has been investigated employing UV spectroscopy and kinetics measurements. The aim of this study was to evaluate the effect of nanoparticles of CuO for proteinase K. In this paper we compare the effect of copper oxide nanoparticles with the effect of copper ions on proteinase K sta...
متن کاملA novel form of human disease with a protease-sensitive prion protein and heterozygosity methionine/valine at codon 129: Case report
BACKGROUND Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder in humans included in the group of Transmissible Spongiform Encephalopathies or prion diseases. The vast majority of sCJD cases are molecularly classified according to the abnormal prion protein (PrPSc) conformations along with polymorphism of codon 129 of the PRNP gene. Recently, a novel human disease, te...
متن کاملIsolation of Proteinase K-Sensitive Prions Using Pronase E and Phosphotungstic Acid
Disease-related prion protein, PrP(Sc), is classically distinguished from its normal cellular precursor, PrP(C), by its detergent insolubility and partial resistance to proteolysis. Molecular diagnosis of prion disease typically relies upon detection of protease-resistant fragments of PrP(Sc) using proteinase K, however it is now apparent that the majority of disease-related PrP and indeed prio...
متن کاملEffect of specific proteolytic cleavages on tubulin polymer formation.
The capacity for self-polymerization and shape of the tubulin polymers assembled after digestion with trypsin, Pronase, chymotrypsin, subtilisin, Staphylococcus aureus proteinase V8 and proteinase K were investigated. Digestion with trypsin, Pronase or chymotrypsin resulted in a decrease in the ability of tubulin for self-assembly, whereas limited proteolysis with subtilisin, S. aureus proteina...
متن کاملHeterogeneity of the Abnormal Prion Protein (PrPSc) of the Chandler Scrapie Strain
The pathological prion protein, PrPSc, displays various sizes of aggregates. In this study, we investigated the conformation, aggregation stability and proteinase K (PK)-sensitivity of small and large PrPSc aggregates of mouse-adapted prion strains. We showed that small PrPSc aggregates, previously thought to be PK-sensitive, are resistant to PK digestion. Furthermore, we showed that small PrPS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 266 1431 شماره
صفحات -
تاریخ انتشار 1999